Welcome to the Knowledge Agenda on Automatic Driving, an initiative of the Ministry of Infrastructure and Water Management, Department of Transport and the RDW-Vehicle-approval, to provide an online overview of available and required knowledge in the field of automatic driving.

The overview is divided into a number of knowledge domains to map the various facets. In the library you will find an extensive collection of reports, papers and presentations, including summaries and background information. The library is used worldwide. The last report on Ethics was requested 674 times in a short time! About 30 pieces are downloaded every day.

The collection of knowledge documents is managed in Dropbox. With Dropbox you can search directly in the folders with documents and full text. Contact joop@veenis.net to gain access to the Dropbox.

Since 2015 we keep a list of knowledge questions (the required knowledge). Our collection of documents provides an answer to these knowledge questions. New questions are coming up because we are getting further and further into the implementation of “Connected Automated Driving”. The set of knowledge questions includes the topics automated driving and Smart Mobility (ITS). Additional overviews with projects are available here on the ITS theme. Experts on themes also develop knowledge and standards in the Netherlands/EU; an overview can be found here.

The popular knowledge questions are:

HUMAN-FACTORS-Acceptance

“One central aspect of human-machine interaction is the perceived autonomy of the consumer [4, 29]. While the role of consumer autonomy has been addressed directly or indirectly by some studies, its criticality for consumer acceptance of automated technologies might not be fully captured in the contexts studied. Restricting or removing the autonomy of individuals could cause reactance, i.e., negative psychological and contrary behavioral responses of consumers as reactions to a perceived restriction of their personal freedoms [6, 44]. Automated driving systems could be perceived as a threat to drivers’ autonomy, and reactance could arise in terms of consumer boycott intentions or low adoption rates. Presently, it it is unclear if consumers are willing to accept a loss in control [56].”nnFound on (p.690): Consumer Perceptions of Automated Driving Technologies: An Examination of Use Cases and Branding Strategiesnn

“According to (Anderson, et al. 2014) Self-propelled vehicles could considerably upsurge access and movement across a variety of populations presently incapable or not permitted to use conventional automobile. These include the incapacitated, older people, and children of age 16 or less. The most promising advantages would be personal independence, increased sociability, and access to vital services. Level 4 automation is expected to provide mobility and access at reduced cost when compared to the current system which provides mobility services for disabled for 14 to 18 percent of their budgets in the U.S. “nnFound on (p.42): Impact of Autonomous Vehicles on Urban Mobilitynn“This type of combined and improved transport systems come with many advantages like they would reduce the necessity for roads and parking; lessen congestion, air pollution and greenhouse gas emissions; would support the optimization of capitals used for transportation; and upsurge the living standards in the region. “nnFound on (p.39): Impact of Autonomous Vehicles on Urban Mobility nn“Considering that off-street parking represents 50 000 spots in the baseline case and that the most parking- intensive scenario (car sharing without public transport) would require 25 621 spots, on-street parking spots could be totally removed from the streets, whatever the scenario considered. This would allow the reallocation of 1 530 000 m2 to other public uses2, equivalent to almost 20% of the kerb-to-kerb street area in Lisbon or 210 football fields. This freed-up space could be dedicated to non-motorised transport modes, delivery bays, parklets or other recreational and commercial uses. “nnFound on (p.26): Urban Mobility Upgrade

Brand equity has been found to be positively related to customer loyalty and willingness to pay. While strong brands are generally helpful for the marketing of products and services, the importance of brands has been found to vary across industry sectors, with a high relevance for the marketing of automobiles [22]. The relevance of branding strongly depends on the function of the brand as risk reducing factor, its function to enhance information efficiency, and its symbolic value. Since the purchase of a new car is an extensive decision involving comparably high expenditures and the collection of extensive information, strong brands can promote the purchasing process.nnBesides the sparse empirical evidence for the risk-reducing effects of strong brands in the context of automated driving [13], the aforementioned brand functions should be positively related to consumer acceptance of automated driving systems. Knowledge and experience of consumers with automated driving technology is marginal. In combination with additional cost for automated driving abilities, consumers are likely to evaluate a purchase decision as risky. Strong brands can effectively help to reduce perceptions of risk. “nFound on (p.691): Consumer Perceptions of Automated Driving Technologies: An Examination of Use Cases and Branding Strategies nn“While consumers still have many questions about safety, liability and the operation of self-driving cars, their receptivity increased significantly when presented with the right value proposition, which can be summed up as follows: shorter commute times + reduced traffic-related variability + the ability to use the vehicle in either self-driving or human- operated mode (self-driving on/off) = a strong incentive for consumer adoption.nnCompanies that get the value proposition right – and deliver a mobility/driving experience that is esthetically and emotionally pleasing could dominate the market. Companies that miss the mark on either the technology or the mobility experience could find themselves left behind. “nnFound on (p.4): Self-Driving Cars: Are We Ready?

“Governments can anticipate—and possibly even accelerate—this watershed by taking some or all of the actions described in this Article. These strategies, which were identified through extensive discussions with developers and regulators of automated driving systems as well as other emerging technologies, are roughly organized into three overlapping categories: n

    n

  • Administrative strategies include preparing government agencies, preparing public infrastructure, leveraging procurement, and advocating for safety mandates.
  • n

n

    n

  • Legal strategies entail carefully analyzing and, as necessary, clarifying existing law as it applies to automated driving; many of these strategies would also internalize more of the costs of conventional driving in a way that could properly incentivize automated driving.
  • n

  • Community strategies involve identifying specific local needs, opportunities, and resources that may be relevant to automated driving; communities can already start developing proposals in anticipation of public and private grants that may soon be announced. “
  • n

nFound on (p.3):How Governments Can Promote Automated Drivingnn

Our annual knowledge report reports on this. It indicates to which knowledge questions answers and research have become available. In December, we will put the subjects and knowledge questions for research and trials into the coming year. Currently, the priorities in the list of knowledge questions (AR + C-ITS) are being worked on by, among others, IenW, RWS, Knowledge Institutions and Provinces, Cities, regions and pilot projects.

On this site you will also find an overview of relevant conferences and events and a collection of films and webinars via the menu. News and current developments are maintained by us through the library and twitter feed (#KARNL). Every week, a lot of knowledge and material is added to the collection, in all knowledge areas.